SCIENCE GOALS
The GMT will have a resolving power 10 times greater than the Hubble Space Telescope. It will investigate: the origin and evolution of planetary systems, star formation, evolution of the chemical elements, black hole growth, dark matter and dark energy, formation and evolution of galaxies, first light and reionization.

LOCATION
Las Campanas Observatory, Chile

ELEVATION
2,500 m

WAVELENGTH RANGE
Optical to infrared

FIRST LIGHT TARGET DATE
2029

INSTRUMENTS

G-CLEF
Visible echelle spectrograph
(PI: Andrew Szentgyorgyi, SAO/Harvard)

GMACS
Visible multi-object spectrograph
(Co-PIs: Darren DePoy & Jennifer Marshall, Texas A&M)

GMTIFS
Near IR IFU and adaptive optics imager
(PI: Rob Sharp, ANU)

GMTNIRS
Infrared echelle spectrograph
(PI: Dan Jaffe, UT Austin)

MANIFEST
Facility fiber optics positioner
(PI: Jon Lawrence, AAO)

The Giant Magellan Telescope will be one member of the next generation of giant ground-based telescopes that promises to revolutionize our view and understanding of the universe.
The GMT project is an international consortium of leading universities and scientific institutions:

Arizona State University • Astronomy Australia Ltd • Australian National University • Carnegie Institution for Science

FAPESP – São Paulo Research Foundation • Harvard University • Korea Astronomy and Space Science Institute

Smithsonian Institution • Texas A&M University • The University of Texas at Austin

University of Arizona • University of Chicago

To learn more visit
GMTO.org
info@gmto.org