The GMT Enclosure Design

Presented by Bruce C. Bigelow, PhD
Site, Enclosure, and Facilities Manager
GMT Project Overview

Agenda:
- What is GMT?
- Project Location & Access
- Site Masterplan Overview
- Site Work Completed to Date
- GMT Enclosure Design
- A&E Procurement Schedule

July 2020
The GMT Partnership

- GMTO is an international collaboration of academic and research institutions (not governments)
- GMTO Corp is a US non-profit formed in 2006 for the purpose of building and operating the GMT.
GMT Mission – Forefront Science for the Next 50 Years

- GMT Science Book: science goals for the next decade

- Top-Level Science Areas
 - Formation & Properties of Extra-solar planets
 - Stellar Populations and
 - Chemical Evolution
 - Galaxy Assembly and Evolution
 - Black Hole Growth
 - Dark Matter, Dark Energy and Fundamental Physics
 - First-Light & Reionization
 - Transient Phenomena
GMT Project Location

- GMT Project Location
 - Las Campanas Observatory, Chile

- Summit Site Elevation
 - 2,514m (8,250 ft)
GMT Project Access

- **Vehicular Access**
 - Pan American Highway
 - ~160km N.E. of La Serena, Chile

- **Location Benefits**
 - High Altitude
 - Dry Environment
 - Minimal Light Pollution
 - 300+ Viewing Nights / Year
Site Masterplan Overview - Campus

Overall Site Plan

A Summit Site (2514m)
 - Enclosure
 - Summit Support Building
 - Summit Utility Building
 - Summit Utility Tunnel
 - Summit Office Building

B Support Site No. 1 (2426m)
 - Shop Building
 - Warehouse Building

C Support Site No. 2 (2385m)
 - Contractor Lodge
 - Cafeteria / Kitchen
 - Recreation Center
 - GMT Lodge
Site Masterplan Overview - Summit

Summit Site Plan:
- Enclosure
- Summit Support Building
- Summit Utility Building
- Summit Office Building
- Water Pad

July 2020
Site Masterplan Overview – SS1

Support Site No. 1 Plan

- **A** Warehouse Building
- **B** Shop Building
- **C** Equipment / Utility Yard
- **D** Fuel Storage & Tanks

July 2020
Site Masterplan Overview – SS2

Support Site No. 2 Plan

A Contractor Residence
- 68 Rooms (x1, 2, or 3 Occupants)

B Cafeteria / Kitchen

C Recreation Center

D GMTO Residence
- 24 Rooms (1 Occupant Each)
Work Complete to Date
Work Complete to Date

[Image of a construction site on a mountainous terrain]

July 2020
Work Complete to Date
The GMT Enclosure

Enclosure Overview

- Independently rotating cylindrical (carousel type) structure with faceted vertical walls
- Rounded edges for smooth air flow
- Overall height (~64m) and diameter (~60m) determined by:
 - Telescope swept volume
 - Seismic isolation movement
 - Overhead bridge crane requirement
 - Observing level floor hatch
- Shutter size is based upon the telescope viewing angles and required aperture width
- Enclosure rotation mechanisms are attached to the Upper Enclosure (rotating) and ride upon a stationary rail on the Lower Enclosure
The GMT Enclosure

- Enclosure Configurations

 - Closed
 - Open
 - Open with Windscreen Deployed
Enclosure

- Enclosure Volume & Aperture

Enclosure – Closed w/ Telescope Swept Volume

Enclosure – Open w/ Telescope Swept Volume
Enclosure

- **Enclosure Subsystems**
 - **Upper Enclosure**
 - Bi-Parting Shutters
 - Wind Vents
 - Windscreen
 - Vertical Circulation
 - Overhead Bridge Crane
 - Upper Enclosure Air Conditioning System
 - Mechanical (Bogie) Corridor
 - **Lower Enclosure**
 - Observing Level Floor
 - Floor Hatch
 - **Telescope Pier**
 - Seismic Isolation System
 - Pier Lift Platform

- Enclosure – Section / Perspective w/ Critical Elevations

- **Enclosure – Section / Perspective w/ Critical Elevations**

- July 2020
Lower Enclosure Floor Plans

- Grade Level (0.0m)
 - Entrance Lobby
 - Instrument Bays – 563m² (6,060sf)
 - Shipping & Receiving – 174m² (1,880sf)
 - Open Storage – 647m² (6,970sf)
 - Utility Room – 242m² (2,600sf)
 - Utility Shaft Entrance
 - Seismic Loops for Utilities
Lower Enclosure Floor Plans

- Control Level (5.3m)
 - Vestibule
 - Control Room – 93m² (1,000sf)
 - Operations Room – 30m² (320sf)
 - Computer Room – 92m² (990sf)
 - IT Room – 25m² (270sf)
 - Offices (x2) – 14m² (150sf) ea.
Enclosure Architecture

- **Lower Enclosure Floor Plans**
 - Observing Level (11.8m)
 - Provides the main floor level for maintaining and servicing the telescope
 - Located 11.8m above grade
 - Egress through 2 stairs and 1 elevator
 - An 11.0 m square operable floor hatch is provided to allow mirrors and telescope equipment into the observing chamber
Enclosure Functions

- **Main Enclosure Functions:**
 - Protection of the telescope from:
 - Inclement weather, wind and daytime light
 - Seismic activity
 - Support telescope science operations:
 - Track with the telescope while observing
 - Modulate and control air flow and wind speed within the enclosure while observing
 - Block some light sources
 - Must not negatively affect science operations (seeing)
 - Environmental control of the observing chamber:
 - Prevent excessive daytime temperature variation within the enclosure to prevent damage to the mirrors
 - Pre-condition to nighttime temperatures to reduce acclimation time of the equipment
 - Exhaust waste heat away from the telescope
Enclosure Functions

- **Other Enclosure Functions:**
 - Provide a dark daytime calibration environment
 - Support maintenance activities
 - Removal and reinstallation of mirror cells for recoating using the overhead crane
 - Instrument installation
 - Rotation of the enclosure to support snow removal and other operations tasks
 - Access to all equipment within the enclosure
 - Provide workspaces:
 - Office space with all associated infrastructure
 - Lab spaces for instrument maintenance
 - Provide a telescope control room
 - Provide a computer server room
 - Provide storage areas for mirror cells and equipment

Section at Enclosure Bridge Crane

Control & Computer Rooms
Enclosure Functions

- Other Enclosure Functions:
 - Provide and/or distribute utilities for the telescope:
 - Compressed Air
 - Cooling fluids
 - Cyrogenic cooling system (compressed helium)
 - CO2 refrigeration system
 - Telescope hydraulic system
 - Power conditioning and generation (at SS1 yard)
Technical Challenges

- **Major technical challenges:**
 - **Mechanisms:**
 - Existing observatories have notoriously unreliable kinetic architecture
 - Two high-mass movable structures
 - Upper enclosure excl. shutters: ~3400MT
 - Upper enclosure shutters: ~430MT/each
 - Upper enclosure total: ~4260MT
 - ~70 individually controlled wind vents
 - Floor Hatch
 - **Environmental Design:**
 - HVAC system for observing chamber
 - Seal designs to provide a light and weather tight enclosure
More technical challenges:

- Seismic Design:
 - Seismically active area
 - Seismic isolation system must provide stiffness and resist normal telescope accelerations
 - Flexible utility transitions between fixed vs isolated structures

- Controls Design
 - Controls interfaces with many subsystems
 - Reliable communications through conductive rail

- Electrical Design
 - Reliable power through conductive rail
 - Power conditioning/backup generator system

- Infrastructure Design
 - Compact, modular telescope utility designs
Reference Design

Reference Design Maturity:

- Critical (60%) design:
 - Enclosure Concrete and Under-slab Utilities
- Preliminary (30%) design:
 - Enclosure structure
 - Mechanisms
 - Enclosure Rotation System
 - Shutter Machinery
 - Floor Hatch Machinery
 - Pier Lift Machinery
 - Wind Screen
 - Wind Vents
- Conceptual (5%) Design
 - Seismic Isolation System
 - Utilities design

Observing floor level framing plan
Summit Utility Building & Utility Tunnel

- Summit Utility Building
 - Mechanical Room
 - Gas Refrigeration & Cryogenics
 - Hydrostatic Bearing Room
 - Exhaust Fan Room
 - Electrical Room
 - IT & Communication Room
 - Miscellaneous Spaces
 - Storage
 - Restroom
 - Fire Riser Room
Summit Utility Building & Utility Tunnel
Summit Utility Building & Utility Tunnel

- **Summit Utility Tunnel**
 - The Summit Utility Tunnel connects the Enclosure to the Summit Utility Building
 - Two Primary Purposes
 - Utility Corridor
 - Ventilation Corridor (Duct)
Support Site No. 1 – Utility Yard

Support Site No. 1 Plan

A. Warehouse Building
B. Shop Building
C. Equipment / Utility Yard
D. Fuel Storage & Tanks
Support Site No. 1 – Utility Yard

- Exterior Equipment Yard
 - Main electrical hub for the entire GMT site
 - Major Equipment
 - Electrical
 - Meter, switch gear, transformers
 - DRUPS units
 - E-house
 - Mechanical
 - Fluid Coolers
 - Diesel Fuel Tanks